Estadística y probabilidad

¿QUÉ ES LA PROBABILIDAD Y LA ESTADÍSTICA?

La Probabilidad y la Estadística se encargan del estudio del azar desde el punto de vista de las matemáticas:
  • La Probabilidad propone modelos para los fenómenos aleatorios, es decir, los que se pueden predecir con certeza, y estudia sus consecuencias lógicas.
  • La Estadística ofrece métodos y técnicas que permiten entender los datos a partir de modelos.
De esta manera, el Cálculo de las Probabilidades es una teoría matemática y la Estadística es una ciencia aplicada donde hay que dar un contenido concreto a la noción de probabilidad.

PROBABILIDAD

En este sentido, el cálculo científico de probabilidades puede ayudarnos a comprender lo que en ocasiones la intuición nos indica de manera errónea. Un ejemplo típico es la denominada "paradoja de los cumpleaños". Supongamos que estamos en un grupo de 23 personas. Los cálculos nos dicen que la probabilidad de que dos personas celebren el mismo día su cumpleaños es del 50%, algo que a simple vista parece increíble (Paradoja del Cumpleaños »). No es de extrañar por tanto que la Teoría de Probabilidad se utilice en campos tan diversos como la demografía, la medicina, las comunicaciones, la informática, la economía y las finanzas.



ESTADÍSTICA

Cuando hablamos de estadística, se suele pensar en un conjunto de datos numéricos presentada de forma ordenada y sistemática. Esta idea es debida a la influencia de nuestro entorno, ya que hoy día es casi imposible que cualquier medio de communicación, periódico, radio, televisión, etc, no nos aborde diariamente con cualquier tipo de información estadística.
Sólo cuando nos adentramos en un mundo más específico como es el campo de la investigación de las Ciencias Sociales: Medicina, Biología, Psicología, ... empezamos a percibir que la Estadística no sólo es algo más, sino que se convierte en la única herramienta que, hoy por hoy, permite dar luz y obtener resultados, y por tanto beneficios, en cualquier tipo de estudio, cuyos movimientos y relaciones, por su variabilidad intrínseca, no puedan ser abordadas desde la perspectiva de las leyes determistas.
La Estadística se ocupa de los métodos y procedimientos para recoger, clasificar, resumir, hallar regularidades y analizar los datos (Estadística Descriptiva), siempre y cuando la variabilidad e incertidumbre sea una causa intrínseca de los mismos; así como de realizar inferencias a partir de ellos, con la finalidad de ayudar a la toma de decisiones y en su caso formular predicciones ( Estadística Inferencial).


Espacio muestral
El espacio muestral es el conjunto de todos los posibles resultados de un experimento aleatorio y se suele representar como E (o bien como omega, Ω, del alfabeto griego).
Por ejemplo, cuando lanzamos una moneda, ¿cuáles son todos los posibles resultados que podemos obtener? Que salga cara o cruz, ¿verdad? En total son dos posibles resultados, por lo que el espacio muestral tiene 2 elementos.
E = {cara, cruz}
Y si lanzamos un dado, tenemos en total 6 posibles resultados que pueden salir. Por lo tanto el espacio muestral sería de 6 elementos.
E = {1, 2, 3, 4, 5, 6}.
Suceso
Un suceso es cualquier subconjunto del espacio muestral. Por ejemplo, “sacar cara” en el lanzamiento de una moneda, “sacar el número 5” o “sacar un número primo” en el lanzamiento de un dado son sucesos.
Veamos cuál sería el espacio muestral en el primer apartado de nuestro ejercicio.
¿Cuáles son todos los posibles resultados? Nos referimos a los números de las bolas, que son los números del 11 al 20.
Nuestro espacio muestral tiene 10 elementos:
E = {11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
Y el suceso por el que nos preguntan es “obtener un número primo”.
Ahora, ¿cómo calculamos la probabilidad de este suceso?
Cuando todos los sucesos elementales tienen las misma probabilidad de ocurrir, la probabilidad de un suceso cualquiera A se define como el cociente entre el número de casos favorables y el número de casos posibles. Esta es la Ley de Laplace








No hay comentarios.:

Publicar un comentario